Scaling Limit for Subsystems and Doplicher–Roberts Reconstruction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak-Coupling Limit. I A Contraction Semigroup for Infinite Subsystems

We consider the class of quantum mechanical master equations defined on a generic Banach space, arising by projecting weakly perturbed one-parameter groups of isometries. We show that the possible semigroup approximations are far from unique. However, uniqueness can be reestablished through the introduction of a dynamical time averaging map. The generator of the resulting Contraction Semigroup ...

متن کامل

Limit distributions and scaling functions

We discuss the asymptotic behaviour of models of lattice polygons, mainly on the square lattice. In particular, we focus on limiting area laws in the uniform perimeter ensemble where, for fixed perimeter, each polygon of a given area occurs with the same probability. We relate limit distributions to the scaling behaviour of the associated perimeter and area generating functions, thereby providi...

متن کامل

A Scaling Limit for t-Schur Measures

To each partition λ, we introduce a measure Sλ(x; t)sλ(y)/Zt where sλ is the Schur function and Sλ(x; t) is a generalization of the Schur function defined in [M] and Zt is a normalization constant. This measure, which we call the t-Schur measure, is a generalization of the Schur measure [O] and the shifted Schur measure studied by Tracy and Widom [TW3]. We prove that by a certain specialization...

متن کامل

Scaling limit for a drainage network model

We consider the two dimensional version of a drainage network model introduced by Gangopadhyay, Roy and Sarkar, and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed by Fontes, Isopi, Newman and Ravishankar.

متن کامل

Scaling Limit for Trap Models on Z

We give the " quenched " scaling limit of Bouchaud's trap model in d ≥ 2. This scaling limit is the fractional-kinetics process, that is the time change of a d-dimensional Brownian motion by the inverse of an independent α-stable subordinator. 1. Introduction. This work establishes scaling limits for certain important models of trapped random walks on Z d. More precisely we show that Bouchaud's...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Poincaré

سال: 2009

ISSN: 1424-0637,1424-0661

DOI: 10.1007/s00023-009-0418-8